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Genome sequence analysis of potential probiotic strain 
Leuconostoc lactis EFEL005 isolated from kimchi

Leuconostoc lactis EFEL005 (KACC 91922) isolated from 
kimchi showed promising probiotic attributes; resistance 
against acid and bile salts, absence of transferable genes for 
antibiotic resistance, broad utilization of prebiotics, and no 
hemolytic activity. To expand our understanding of the spe-
cies, we generated a draft genome sequence of the strain and 
analyzed its genomic features related to the aforementioned 
probiotic properties. Genome assembly resulted in 35 con-
tigs, and the draft genome has 1,688,202 base pairs (bp) with 
a G+C content of 43.43%, containing 1,644 protein-coding 
genes and 50 RNA genes. The average nucleotide identity 
analysis showed high homology (≥ 96%) to the type strain 
L. lactis KCTC3528, but low homology (≤ 95%) to L. lactis 
KCTC3773 (formerly L. argentinum). Genomic analysis re-
vealed the presence of various genes for sucrose metabo-
lism (glucansucrases, invertases, sucrose phosphorylases, and 
mannitol dehydrogenase), acid tolerance (F1F0 ATPases, ca-
tion transport ATPase, branched-chain amino acid permease, 
and lysine decarboxylase), vancomycin response regulator, 
and antibacterial peptide (Lactacin F). No gene for produc-
tion of biogenic amines (histamine and tyramine) was found. 
This report will facilitate the understanding of probiotic 
properties of this strain as a starter for fermented foods.
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Introduction

Probiotics are defined as “live microorganisms that, when 
administered in adequate amounts, confer a health benefit 
on the host” (FAO/WHO), and currently several species of 
Lactobacilli, Lactococci, and Bifidobacteria are approved as 
probiotics by the Korean Ministry of Food and Drug Safety 

(http://www.foodnara.go.kr/hfoodi/industry/). However, no 
species of Leuconostoc are regarded as probiotics, even 
though L. mesenteroides and L. citreum are important starter 
microbes used in several industrial and food fermentation 
processes, such as the production of cheese, butter, kefir, sour-
dough, and kimchi (De Bruyne et al., 2007). The disqualifi-
cation of this genus as probiotics is mainly due to the low 
colonization probability caused by the absence of acid and 
bile salt resistance. A phylogenic analysis of the Leuconostoc 
genus based on 16S rRNA genes revealed that L. lactis is lo-
cated between L. mesenteroides, and L. citreum, showing its 
relevance to the predominance species in kimchi (Hemme 
and Foucaud-Scheunemann, 2004)
  Recently, we isolated a novel probiotic candidate, L. lactis 
EFEL005, from kimchi that has resistance to acid and bile 
salts (Noh, 2015). The strain quickly metabolizes diverse pre-
biotic substrates such as fructooligosaccharides, isomaltooli-
gosaccharides, and xylooligosaccharides. These properties 
suggest that the strain can survive to reach the human large 
intestine and propagate to high density via the consumption 
of prebiotics ingested with meals. In addition, this strain is 
safe for use as a food additive because it shows no hemolytic 
activity against human red blood cells and lacks transferable 
antibiotic-resistance genes. Despite its potential, L. lactis was 
poorly characterized at the genome level. Therefore, in this 
study, we generated a draft genome sequence of the strain 
and analyzed its genomic features related to probiotic pro-
perties.

Materials and Methods

Bacterial culture and DNA extraction
L. lactis EFEL005 was isolated from kimchi in Cheongju city, 
Korea (36°38 N, 127°29 E). This strain was routinely grown 
in Lactobacilli MRS (Difco) broth or agar medium at 30°C. 
The culture was maintained in 50% glycerol solution at −70°C 
until needed. Dextran production was tested by growth on 
PES (phenylethyl alcohol containing 2% sucrose) agar. L. 
lactis EFEL005 was cultured in MRS medium at 30°C, and 
genomic DNA was extracted using a QIAamp DNA Mini Kit 
(Qiagen), following the standard protocol recommended 
by the manufacturer.

Phylogenetic analysis
The 16S rRNA gene of EFEL005 was amplified using the 
universal primers 27F and 1492R (Lane, 1991), and was se-
quenced by BIOFACT Co. The sequences of the reference 
strains used for phylogenetic analysis were obtained from 
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Fig. 1. Neighbor-joining tree generated using 
MEGA 6.0 based on 16S rRNA gene sequences, 
showing the phylogenetic relationships of L. 
lactis EFEL005 and related taxa. Bootstrap 
values are shown as percentages of 1,000 repli-
cates when these values are greater than 50%.
Weissella paramesenteroides DSM 20288T

(M23033) was used as an outgroup. Bar, 0.01 
changes per nucleotide position.

Table 1. Comparison of the major genomic features of L. lactis EFEL005 and other Leuconostoc strains 

Genome Length (bp) G+C
Content (%) 

Predicted
ORFs

rRNA 
genes 

tRNA 
genes 

Isolated 
from 

SignalP 
(%) References 

L. lactis KCTC 3528 2,011,205 42.64 2,727 3 46 Milk 2.78 Unpublished
L. lactis EFEL005 1,688,202 43.43 1,644 3 50 Kimchi 4.87 In this study
L. argentinum KCTC 3773 1,720,683 42.89 1,759 3 48 Milk 3.92 Nam et al. (2010)
L. carnosum JB16 1,773,468 37.13 1,691 12 66 Kimchi 3.96 Jung et al. (2012a)
L. citreum KM20 1,896,614 38.87 1,820 12 70 Kimchi 4.23 Kim et al. (2008)
L. gasicomitatum LMG 18811 1,954,080 36.66 1,912 12 67 Meat 3.77 Johansson et al. (2011)
L. gelidum JB7 1,893,499 36.68 1,796 12 67 Kimchi 3.56 Jung et al. (2012b)
L. kimchii IMSNU 11154 1,877,273 37.90 1,855 12 68 Kimchi 4.37 Oh et al. (2010)
Leuconostoc sp. C2 2,101,787 37.91 2,129 12 68 Kimchi 4.18 Lee et al. (2011)
L. mesenteroides ATCC 8293 2,075,763 37.67 2,005 12 71 Olives 4.94 Makarova et al. (2006)
L. mesenteroides J18 2,016,426 37.65 1,937 12 71 Kimchi 4.49 Jung et al. (2012c)

the EzTaxon-e (http://eztaxon-e.ezbiocloud.net; Kim et al., 
2012) or GenBank (Benson et al., 2014) databases. Sequence 
similarities were calculated using the EzTaxon-e server. 
Multiple alignment with closely related sequences was per-
formed using CLUSTAL W (Thompson et al., 1997). A 
phylogenetic tree was generated using the neighbor-joining 
method (Saitou and Nei, 1987) using MEGA 5.2 software 
(Tamura et al., 2011). A bootstrap analysis using 1,000 rep-
licates was performed to assess the confidence limits of phy-
logenetic trees (Felsenstein, 1985).

Genome sequencing and assembly
Genomic DNA of L. lactis EFEL005 was sequenced by Chun-
Lab using the Illumina MiSeq platform with a 300-bp paired- 
end library. The Illumina reads were assembled using CLC 
Genomics Workbench 6.0 (CLCbio). The initial assembly 
was converted for the CLC Genomics Workbench by cons-
tructing artificial reads from the consensus to collect the read 
pairs in the Illumina paired-end library. CodonCode Aligner 
3.7.1 (CodonCode Corp.) was used for sequence assembly 

and quality assessment in the subsequent finishing process. 
A total of 7,066,614 sequencing reads from the Illumina 
platform provided 775.85× coverage of the genome.

Genome annotation
The coding sequences (CDSs) were predicted by Glimmer 
3.02 (Delcher et al., 2007). The tRNAs were identified by 
tRNA-Scan-SE (Lowe and Eddy, 1997), and rRNAs were 
found using HMMER with EzTaxon-e rRNA profiles (Kim 
et al., 2012). For functional annotation, the predicted CDSs 
were compared to catalytic families (catFam) and NCBI 
Clusters of Orthologous Groups (COGs) by rpsBLAST and 
NCBI reference sequences (RefSeq), and to SEED databases 
by BLASTP (Tatusov et al., 2000; Overbeek et al., 2005; Pruitt 
et al., 2009; Yu et al., 2009).

Comparison genome analysis
Eleven genome sequences (Table 1) of strains that belong 
to Leuconostoc species were obtained from the EzGenome 
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Table 2. COG (cluster of orthologous groups of proteins) distribution of ORFs (open reading frames) found in a draft genome of L. lactis EFEL005
Category Group Function  Number of ORF

Information storage and processing
J Translation, ribosomal structure and biogenesis 134
K Transcription 90
L DNA replication, recombination and repair 105

Cellular processes

D Cell division and chromosome partitioning 20
O Posttranslational modification, protein turnover, chaperones 38
M Cell envelope, biogenesis, outer membrane 86
N Cell motility and secretion 8
P Inorganic ion transport and metabolism 66
T Signal transduction mechanisms 35

Cell metabolism

C Energy production and conversion 53
G Carbohydrate transport and metabolism 113
E Amino acid transport and metabolism 133
F Nucleoside transport and metabolism 73
H Coenzyme metabolism 55
I Lipid metabolism 46
Q Secondary metabolites biosynthesis, transport and catabolism 6

Others
R General function prediction only 143
S Function unknown 138

Total 1342

                   (A)

                   (B)

Fig. 2. Statistics of annotated genes for L. lactis EFEL005 based on the COG (A) and SEED (B) databases.

database (http://ezgenome.ezbiocloud.net), and used to cal-
culate average nucleotide identity (ANI) values (Goris et al., 
2007) with strain EFEL005. ANI is a similarity measure be-
tween two genome sequences that may be used to replace 

DNA-DNA hybridization. For ANI calculation, the query 
genome was cut into small fragments (1,020 bp), and high- 
scoring pairs between two genome sequences were selected 
using the BLAST algorithm (Altschul et al., 1997).
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Table 3. Average nucleotide identity (ANI) value s among 11 Leuconostoc strains 
Strains 1 2 3 4 5 6 7 8 9 10 11

  1. L. argentinum KCTC 3773 100.00 96.91 94.38 74.13 74.92 73.89 73.84 74.20 73.83 72.91 72.85
  2. L. lactis KCTC 3528 96.07 100.00 96.10 74.13 74.08 73.55 73.48 74.26 73.51 73.03 72.87
  3. L. lactis EFEL005 94.52 97.34 100.00 73.49 73.96 73.73 73.62 73.85 73.51 72.19 71.88
  4. L. carnosum JB16a 74.19 74.09 73.75 100.00 74.64 75.95 75.75 75.51 74.80 73.96 74.48
  5. L. citreum KM20a 74.92 75.29 74.17 74.48 100.00 74.42 74.28 74.37 73.88 73.20 73.28
  6. L. gasicomitatum LMG 18811a 73.97 74.35 73.83 76.02 74.32 100.00 94.75 77.36 77.27 73.19 73.13
  7. L. gelidum JB7a 73.95 74.20 73.93 75.77 74.47 94.88 100.00 77.47 77.34 73.21 73.21
  8. L. kimchii IMSNU 11154a 74.15 75.31 74.23 75.52 74.58 77.45 77.47 100.00 99.31 74.32 74.33
  9. Leuconostoc sp. C2a 74.11 74.23 73.80 74.70 73.92 77.24 77.26 99.51 100.00 73.03 72.97
10. L. mesenteroides ATCC 8293a 72.50 73.09 72.21 73.84 72.98 73.27 73.30 74.44 72.87 100.00 98.98
11. L. mesenteroides J18a 72.57 74.01 72.01 74.43 73.20 73.05 73.13 74.33 72.85 99.12 100.00
a Complete sequences 
  ANI values >95%, a de facto cut off value for the identical species, are highlighted in bold.

Table 4. Gene list for probiotic properties in L. lactis EFEL005 
 Deduced function Gene accession number

F1F0 ATPases Llac_11300
Llac_11310
Llac_11320
Llac_11330
Llac_11340
Llac_11350
Llac_11360
Llac_11370 

Cation transport ATPase Llac_03800
Llac_06210
Llac_11760
Llac_16120 

Branched-chain amino acid permeases Llac_01150
Arginine/lysine/ornithine decarboxylases Llac_06370
Vancomycin response regulator VanR Llac_14040
Antibacterial peptide (Lactacin F) Llac_10620

Results and Discussion

Microbial features and classification
L. lactis EFEL005 is Gram-positive, non-motile, and sphere- 
shaped, 1.0–1.5 μm in length, and 0.4–0.5 μm in diameter 
(Garvie et al., 1986). It produced dextran within 1–2 days 
of growth on PES agar at 30°C. LAB gene sequences showing 
more than 99.7% sequence identity to the 16S rRNA of L. 
lactis KCTC 3528T were selected and aligned for phyloge-
netic analysis using the ClustalW algorithm (Fig. 1).

General genome properties
The genome consists of a chromosome with a length of 
1,688,202 bp and a G+C content of 43.43%. Of the 1,694 pre-
dicted genes, 1,644 are protein-coding genes and 50 are RNA 
genes. The annotation of each CDS was made by homology 
search against the cluster of orthologous groups of proteins 
(COG) and SEED databases (Disz et al., 2010). Results of 
the genome annotation are shown in Fig. 2. In the COG 
distribution, R (general function prediction only; 143 open 
reading frames [ORFs]), S (function unknown; 138 ORFs), 
and E (amino acid transport and metabolism; 133 ORFs) 
were abundant categories. Genes responsible for miscella-
neous (241 ORFs), carbohydrates (165 ORFs), clustering- 
based subsystems (115 ORFs), and amino acid metabolism 
(113 ORFs) were abundant among the SEED subsystem cate-
gories. Three hundred twenty-nine genes were assigned to 
be involved in information storage and processing, and an-
other 253 genes were identified to participate in cellular 
processes. The most abundant 479 genes encoded the pro-
teins for cell metabolism, but another 281 genes were poorly 
characterized (Table 2).
  DNA relatedness was previously used as an indicator to 
identify a new prokaryote species (Gardan et al., 1999); how-
ever, in this era of genomics, ANI between a given pair of 
genomes has become the preferred option (Goris et al., 2007). 
The ANI value between EFEL005 and KCTC 3528T (a type 
strain) was greater than 96% (Table 3), indicating that the 
two strains are the same species; the proposed cut-off for 
species boundary is 95–96% (Richter and Rosselló-Móra, 
2009).

Genomic features related to probiotic properties
Genomic analysis revealed the presence of various sucrose- 
catabolizing genes, such as Llac_01250, 07440, and 07470 
for glucansucrases; Llac_12740, 15260, and 15930 for inver-
tases; Llac_02250 for sucrose phosphorylases; and Llac_10130 
for mannitol production. The results indicate that L. lactis 
EFEL005 has been well adapted in the plant-derived environ-
ment. Genes responsible for acid tolerance were also found: 
Llac_11300, 11310, 11320, 11330, 11340, 11350, 11360, and 
11370 for F1F0 ATPases (Ventura et al., 2004); Llac_03800, 
06210, 11760, and 16120 for cation transport ATPase (Kullen 
and Klaenhammer, 1999); Llac_01150 for branched-chain 
amino acid permease (Den Hengst et al., 2005); and Llac_ 
06370 for lysine decarboxylase (Park et al., 1996). In addi-
tion, vancomycin response regulator gene (VanR) was found 
(Llac_14040). No genes for production of biogenic amines 
(histamine and tyramine) were found (Ammor and Mayo, 
2007). The antibacterial peptide (Lactacin F) gene was Llac_ 
10620 (Table 4).
  In conclusion, we determined a draft genome sequence of 
L. lactis EFEL005, and examined its genomic features as a 
lactic acid bacterium. Our results will help to understand 
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the probiotic properties of this strain, and will contribute to 
use of the strain as a probiotic after additional in vivo studies.

Availability of supporting data
The genome sequence of L. lactis EFEL005 was deposited at 
DDBJ/EMBL/NCBI under the accession number JMEA-
00000000. The version described in this paper is the first 
version JMEA01000000. The genome project for this strain 
is listed in the Genome On Line Database (GOLD) (Pagani 
et al., 2012) under project Gi0073879.
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